Honorary members

Honorary membership is awarded to researchers and professionals who have made exceptional contributions to basal ganglia related research in Sweden or internationally.

Hagai Bergman

PROFESSOR, The Hebrew University of Jerusalem

Professor Bergman is one of the rare basal ganglia researchers, which for decades has been contributing both to basic research and clinical neuroscience.

He was the first that pointed towards the therapeutic role of STN lesion in the treatment of PD, which led to the choice of STN as primary target in DBS (Bergman, et al, 1990). The STN is still the main target for DBS treatment in PD, helping hundreds of thousands of people worldwide.

Professor Bergman is still active in DBS research and surgery in several hospitals, where he is involved in mapping the elctrophysiological properties along the electrode trajectories and involved in developing a closed-loop DBS system.

In parallel to his DBS related work, Professor Bergman also runs one of the most advanced research laboratories in non-human primates, with focus on basal ganglia networks in health and disease.

His laboratory has produced some of the most important work pertaining to neural networks in the striatum and GPe during various behavior, reward, and punishment.

Anders Björklund

SENIOR PROFESSOR, Lund University

Anders Björklund is Senior Professor of Neuroscience at Lund University. Through over 50 years of highly productive research, Anders Björklund has made fundamental contributions to the functional neuroanatomy of catecholamines, the biology of dopamine neurons, and the development of new treatment principles for Parkinson’s disease (PD). His best-known achievements are in the field of cell transplantation and brain repair. Anders Björklund started this line of research based on the idea that immature neurons can be used to restore brain circuitry and promote functional recovery in animal models of neurodegenerative diseases. His group pioneered a cell transplantation approach using donor tissue from the fetal brain, bringing it to clinical trials in PD patients. These studies have given proof-of-principle that immature dopamine neurons can survive and restore dopamine neurotransmission in the parkinsonian striatum.

Ann Graybiel

PROFESSOR, McGovern Institute, MIT

Ann Graybiel’s work has had a tremendous impact on our understanding of the cellular organization and functions of the basal ganglia. In the late 1970s, Graybiel discovered the compartmental organization of striatal neurons into striosomes and matrix. Her research then revealed links between striosomal abnormalities and neurological disorders, such as mood dysfunction in Huntington’s disease,, dopamine depletion in Parkinson’s disease, and the development of motor stereotypies upon treatment with psychostimulant drugs.

In later work, Graybiel demonstrated the fundamental role of the basal ganglia in habit formation. Her group demonstrated the emergence of a task-bracketing or “chunking pattern of neuronal activity in the striatum and the infralimbic cortex when a habit is formed.

In summary, Ann Graybiel´s work has raised the status of basal ganglia research on a global level, has led to influential new ideas on how the brain learns and retains habits and skills, and has deepened our understanding of neurodegenerative and neuropsychiatric disorders affecting the basal ganglia. Ann´s passion for the basal ganglia, her beautiful scientific writing and her elegant speeches have been a major source of inspiration for young scientists, who then opted to focus one´s efforts precisely on this part of the brain and its diseases.

Sten Grillner

SENIOR PROFESSOR, Karolinska Intitute

Professor Sten Grillner has over many years investigated the principles for how the motor systems are organized and controlled in the lamprey. He first identified the neural circuits in the spinal cord which generate locomotion, and how they are controlled from the brain stem. Thereafter he has continued to show that the basal ganglia in the lamprey share all important features with higher vertebrates, such as the rodent, and that even the lamprey pallium (cortex) had already received organizational principles seen in higher vertebrates when the lamprey diverged from the other vertebrates for over 500 million years ago. In all his research work Sten Grillner has strived to explain the changes in motor behaviour based on cellular and network level mechanisms.